Hexo

点滴积累 豁达处之

0%

leetcode算法

leetcode算法理论分析

时间及空间复杂度

概述

算法之间的优劣主要从算法所占用的「时间」和「空间」两个维度去考量。

  • 时间维度:是指执行当前算法所消耗的时间,我们通常用「时间复杂度」来描述。
  • 空间维度:是指执行当前算法需要占用多少内存空间,我们通常用「空间复杂度」来描述。

时间复杂度

图示

Leetcode_32

大O符号表示法 」,即 T(n) = O(f(n))

常见的时间复杂度量级有:

  • 常数阶O(1)
  • 对数阶O(logN)
  • 线性阶O(n)
  • 线性对数阶O(nlogN)
  • 平方阶O(n²)
  • 立方阶O(n³)
  • K次方阶O(n^k)
  • 指数阶(2^n)

上面从上至下依次的时间复杂度越来越大,执行的效率越来越低。

常数阶O(1)

无论代码执行了多少行,只要是没有循环等复杂结构,那这个代码的时间复杂度就都是O(1),如:

1
2
3
4
5
int i = 1;
int j = 2;
++i;
j++;
int m = i + j;

上述代码在执行的时候,它消耗的时候并不随着某个变量的增长而增长,那么无论这类代码有多长,即使有几万几十万行,都可以用O(1)来表示它的时间复杂度。

对数阶O(logN)

1
2
3
4
5
int i = 1;
while(i<n)
{
i = i * 2;
}

从上面代码可以看到,在while循环里面,每次都将 i 乘以 2,乘完之后,i 距离 n 就越来越近了。我们试着求解一下,假设循环x次之后,i 就大于 2 了,此时这个循环就退出了,也就是说 2 的 x 次方等于 n,那么 x = log2^n
也就是说当循环 log2^n 次以后,这个代码就结束了。因此这个代码的时间复杂度为:O(logn)

线性阶O(n)

1
2
3
4
5
for(i=1; i<=n; ++i)
{
j = i;
j++;
}

这段代码,for循环里面的代码会执行n遍,因此它消耗的时间是随着n的变化而变化的,因此这类代码都可以用O(n)来表示它的时间复杂度。

线性对数阶O(nlogN)

线性对数阶O(nlogN) 其实非常容易理解,将时间复杂度为O(logn)的代码循环N遍的话,那么它的时间复杂度就是 n * O(logN),也就是了O(nlogN)。

1
2
3
4
5
6
7
8
for(m=1; m<n; m++)
{
i = 1;
while(i<n)
{
i = i * 2;
}
}

平方阶O(n²)

平方阶O(n²) 就更容易理解了,如果把 O(n) 的代码再嵌套循环一遍,它的时间复杂度就是 O(n²) 了。

1
2
3
4
5
6
7
8
for(x=1; i<=n; x++)
{
for(i=1; i<=n; i++)
{
j = i;
j++;
}
}

这段代码其实就是嵌套了2层n循环,它的时间复杂度就是 O(n*n),即 O(n²)

立方阶O(n³)**、K次方阶O(n^k)**

参考上面的O(n²) 去理解就好了,O(n³)相当于三层n循环,其它的类似。

空间复杂度

空间复杂度比较常用的有:O(1)、O(n)、O(n²)

空间复杂度 O(1)

如果算法执行所需要的临时空间不随着某个变量n的大小而变化,即此算法空间复杂度为一个常量,可表示为 O(1)

1
2
3
4
5
int i = 1;
int j = 2;
++i;
j++;
int m = i + j;

代码中的 i、j、m 所分配的空间都不随着处理数据量变化,因此它的空间复杂度 S(n) = O(1)

空间复杂度 O(n)

1
2
3
4
5
6
int[] m = new int[n]
for(i=1; i<=n; ++i)
{
j = i;
j++;
}

这段代码中,第一行new了一个数组出来,这个数据占用的大小为n,这段代码的2-6行,虽然有循环,但没有再分配新的空间,因此,这段代码的空间复杂度主要看第一行即可,即 S(n) = O(n)

递归

递归的特点

  • 一个问题的解可以分解为几个子问题的解
  • 这个问题与分解之后的子问题,除了数据规模不同,求解思路完全一样
  • 存在基线/终止条件

递归如何实现

递归的关键:求出这个递归公式,找到终止条件。
斐波那契数列数列求解:
1 1 2 3 5 8 13 这个的数列我们称之为斐波那契数列
他的求解公式:f(n)=f(n-1)+f(n-2)
终止条件:n<=2 f(n)=1