基数排序与本系列前面讲解的七种排序方法都不同,它不需要比较关键字的大小。
它是根据关键字中各位的值,通过对排序的N个元素进行若干趟“分配”与“收集”来实现排序的。
1 示例
通过一个具体的实例来展示一下,基数排序是如何进行的。
设有一个初始序列为: R {50, 123, 543, 187, 49, 30, 0, 2, 11, 100}。
我们知道,任何一个阿拉伯数,它的各个位数上的基数都是以0~9来表示的。
所以我们不妨把0~9视为10个桶。
我们先根据序列的个位数的数字来进行分类,将其分到指定的桶中。例如:R[0] = 50,个位数上是0,将这个数存入编号为0的桶中。
分类后,我们在从各个桶中,将这些数按照从编号0到编号9的顺序依次将所有数取出来。
这时,得到的序列就是个位数上呈递增趋势的序列。
按照个位数排序: {50, 30, 0, 100, 11, 2, 123, 543, 187, 49}。
接下来,可以对十位数、百位数也按照这种方法进行排序,最后就能得到排序完成的序列。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76
| public class RadixSort { public int getDigit(int x, int d) { int a[] = { 1, 1, 10, 100 }; return ((x / a[d]) % 10); } public void radixSort(int[] list, int begin, int end, int digit) { final int radix = 10; int i = 0, j = 0; int[] count = new int[radix]; int[] bucket = new int[end - begin + 1]; for (int d = 1; d <= digit; d++) { for (i = 0; i < radix; i++) { count[i] = 0; } for (i = begin; i <= end; i++) { j = getDigit(list[i], d); count[j]++; } for (i = 1; i < radix; i++) { count[i] = count[i] + count[i - 1]; } for (i = end; i >= begin; i--) { j = getDigit(list[i], d); bucket[count[j] - 1] = list[i]; count[j]--; } for (i = begin, j = 0; i <= end; i++, j++) { list[i] = bucket[j]; } } } public int[] sort(int[] list) { radixSort(list, 0, list.length - 1, 3); return list; } public void printAll(int[] list) { for (int value : list) { System.out.print(value + "\t"); } System.out.println(); } public static void main(String[] args) { int[] array = { 50, 123, 543, 187, 49, 30, 0, 2, 11, 100 }; RadixSort radix = new RadixSort(); System.out.print("排序前:\t\t"); radix.printAll(array); radix.sort(array); System.out.print("排序后:\t\t"); radix.printAll(array); } }
|
运行结果:
1 2
| 排序前: 50 123 543 187 49 30 0 2 11 100 排序后: 0 2 11 30 49 50 100 123 187 543
|
2 算法分析
排序类型 |
排序方法 |
平均情况 |
最坏情况 |
最好情况 |
空间复杂度 |
稳定性 |
复杂度 |
基数排序 |
基数排序 |
O(d(n+r)) |
O(d(n+r)) |
O(d(n+r)) |
O(n+r) |
稳定 |
较复杂 |
时间复杂度
通过上文可知,假设在基数排序中,r为基数,d为位数。则基数排序的时间复杂度为**O(d(n+r))**。
我们可以看出,基数排序的效率和初始序列是否有序没有关联。
空间复杂度
在基数排序过程中,对于任何位数上的基数进行“装桶”操作时,都需要n+r个临时空间。
算法稳定性
在基数排序过程中,每次都是将当前位数上相同数值的元素统一“装桶”,并不需要交换位置。所以基数排序是稳定的算法。
参考链接