归并排序是建立在归并操作上的一种有效的排序算法
1 概述
归并排序是建立在归并操作上的一种有效的排序算法,该算法是采用分治法(Divide and Conquer)的一个非常典型的应用。
将已有序的子序列合并,得到完全有序的序列;即先使每个子序列有序,再使子序列段间有序。若将两个有序表合并成一个有序表,称为二路归并。
2 基本思想
将待排序序列R[0…n-1]看成是n个长度为1的有序序列,将相邻的有序表成对归并,得到n/2个长度为2的有序表;将这些有序序列再次归并,得到n/4个长度为4的有序序列;如此反复进行下去,最后得到一个长度为n的有序序列。
综上可知:
归并排序其实要做两件事:
(1)“分解”——将序列每次折半划分。
(2)“合并”——将划分后的序列段两两合并后排序。
我们先来考虑第二步,如何合并?
在每次合并过程中,都是对两个有序的序列段进行合并,然后排序。
这两个有序序列段分别为 R[low, mid] 和 R[mid+1, high]。
先将他们合并到一个局部的暂存数组R2中,带合并完成后再将R2复制回R中。
为了方便描述,我们称 R[low, mid] 第一段,R[mid+1, high] 为第二段。
每次从两个段中取出一个记录进行关键字的比较,将较小者放入R2中。最后将各段中余下的部分直接复制到R2中。
经过这样的过程,R2已经是一个有序的序列,再将其复制回R中,一次合并排序就完成了。
代码示例:
1 |
|
掌握了合并的方法,接下来,让我们来了解 如何分解。
在某趟归并中,设各子表的长度为gap,则归并前R[0…n-1]中共有n/gap个有序的子表:R[0…gap-1], R[gap…2*gap-1], … , R[(n/gap)*gap … n-1]。
调用Merge将相邻的子表归并时,必须对表的特殊情况进行特殊处理。
若子表个数为奇数,则最后一个子表无须和其他子表归并(即本趟处理轮空):若子表个数为偶数,则要注意到最后一对子表中后一个子表区间的上限为n-1。
1 | public void MergePass(int[] array, int gap, int length) { |
3 算法思想
排序类型 | 排序方法 | 平均情况 | 最坏情况 | 最好情况 | 空间复杂度 | 稳定性 | 复杂性 |
---|---|---|---|---|---|---|---|
归并排序 | 归并排序 | O(nlog2n) | O(nlog2n) | O(nlog2n) | O(n) | 稳定 | 较复杂 |
时间复杂度
归并排序的形式就是一棵二叉树,它需要遍历的次数就是二叉树的深度,而根据完全二叉树的可以得出它的时间复杂度是*O(n\log2n)**。
空间复杂度
由前面的算法说明可知,算法处理过程中,需要一个大小为n的临时存储空间用以保存合并序列。
算法稳定性
在归并排序中,相等的元素的顺序不会改变,所以它是稳定的算法。
4 归并 堆 快速排序 VS
若从空间复杂度来考虑:首选堆排序,其次是快速排序,最后是归并排序。
若从稳定性来考虑,应选取归并排序,因为堆排序和快速排序都是不稳定的。
若从平均情况下的排序速度考虑,应该选择快速排序。