Hexo

点滴积累 豁达处之

0%

condition

condition

1 概述

我们有时会遇到这样的场景:线程A执行到某个点的时候,因为某个条件condition不满足,需要线程A暂停;等到线程B修改了条件condition,使condition满足了线程A的要求时,A再继续执行。

2 自旋实现的等待通知

最简单的实现方法就是将condition设为一个volatile的变量,当A线程检测到条件不满足时就自旋,类似下面:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
public class Test {
private static volatile int condition = 0;

public static void main(String[] args) throws InterruptedException {
Thread A = new Thread(new Runnable() {
@Override
public void run() {
while (!(condition == 1)) {
// 条件不满足,自旋
}
System.out.println("a executed");
}
});

A.start();
Thread.sleep(2000);
condition = 1;
}
}

这种方式的问题在于自旋非常耗费CPU资源,当然如果在自旋的代码块里加入Thread.sleep(time)将会减轻CPU资源的消耗,但是如果time设的太大,A线程就不能及时响应condition的变化,如果设的太小,依然会造成CPU的消耗。

3 Object提供的等待通知

因此,java在Object类里提供了wait()和notify()方法,使用方法如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
class Test1 {
private static volatile int condition = 0;
private static final Object lock = new Object();

public static void main(String[] args) throws InterruptedException {
Thread A = new Thread(new Runnable() {
@Override
public void run() {
synchronized (lock) {
while (!(condition == 1)) {
try {
lock.wait();
} catch (InterruptedException e) {
Thread.currentThread().interrupt();
}
}
System.out.println("a executed by notify");
}
}
});
A.start();
Thread.sleep(2000);
condition = 1;
synchronized (lock) {
lock.notify();
}
}
}

通过代码可以看出,在使用一个对象的wait()、notify()方法前必须要获取这个对象的锁。

当线程A调用了lock对象的wait()方法后,线程A将释放持有的lock对象的锁,然后将自己挂起,直到有其他线程调用notify()/notifyAll()方法或被中断。可以看到在lock.wait()前面检测condition条件的时候使用了一个while循环而不是if,那是因为当有其他线程把condition修改为满足A线程的要求并调用notify()后,A线程会重新等待获取锁,获取到锁后才从lock.wait()方法返回,而在A线程等待锁的过程中,condition是有可能再次变化的。

因为wait()、notify()是和synchronized配合使用的,因此如果使用了.显示锁Lock就不能用了。所以显示锁要提供自己的等待/通知机制,Condition应运而生。

4 显示锁提供的等待通知

我们用Condition实现上面的例子:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
class Test2 {
private static volatile int condition = 0;
private static Lock lock = new ReentrantLock();
private static Condition lockCondition = lock.newCondition();

public static void main(String[] args) throws InterruptedException {
Thread A = new Thread(new Runnable() {
@Override
public void run() {
lock.lock();
try {
while (!(condition == 1)) {
lockCondition.await();
}
} catch (InterruptedException e) {
Thread.currentThread().interrupt();
} finally {
lock.unlock();
}
System.out.println("a executed by condition");
}
});
A.start();
Thread.sleep(2000);
condition = 1;
lock.lock();
try {
lockCondition.signal();
} finally {
lock.unlock();
}
}
}

5 应用举例

上面我们看到了Condition实现的等待通知和Object的等待通知是非常类似的,而Condition提供的等待通知功能更强大,最重要的一点是,一个lock对象可以通过多次调用 lock.newCondition() 获取多个Condition对象,也就是说,在一个lock对象上,可以有多个等待队列,而Object的等待通知在一个Object上,只能有一个等待队列。用下面的例子说明,下面的代码实现了一个阻塞队列,当队列已满时,add操作被阻塞有其他线程通过remove方法删除元素;当队列已空时,remove操作被阻塞直到有其他线程通过add方法添加元素。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
public class BoundedQueue1<T> {
public List<T> q; //这个列表用来存队列的元素
private int maxSize; //队列的最大长度
private Lock lock = new ReentrantLock();
private Condition addConditoin = lock.newCondition();
private Condition removeConditoin = lock.newCondition();

public BoundedQueue1(int size) {
q = new ArrayList<>(size);
maxSize = size;
}

public void add(T e) {
lock.lock();
try {
while (q.size() == maxSize) {
addConditoin.await();
}
q.add(e);
removeConditoin.signal(); //执行了添加操作后唤醒因队列空被阻塞的删除操作
} catch (InterruptedException e1) {
Thread.currentThread().interrupt();
} finally {
lock.unlock();
}
}

public T remove() {
lock.lock();
try {
while (q.size() == 0) {
removeConditoin.await();
}
T e = q.remove(0);
addConditoin.signal(); //执行删除操作后唤醒因队列满而被阻塞的添加操作
return e;
} catch (InterruptedException e) {
Thread.currentThread().interrupt();
return null;
} finally {
lock.unlock();
}
}

}

6 源码分析

6.1 概述

之前我们介绍AQS的时候说过,AQS的同步排队用了一个隐式的双向队列,同步队列的每个节点是一个AbstractQueuedSynchronizer.Node实例。

Node的主要字段有:

  1. waitStatus:等待状态,所有的状态见下面的表格。
  2. prev:前驱节点
  3. next:后继节点
  4. thread:当前节点代表的线程
  5. nextWaiter:Node既可以作为同步队列节点使用,也可以作为Condition的等待队列节点使用(将会在后面讲Condition时讲到)。在作为同步队列节点时,nextWaiter可能有两个值:EXCLUSIVE、SHARED标识当前节点是独占模式还是共享模式;在作为等待队列节点使用时,nextWaiter保存后继节点。

Condition实现等待的时候内部也有一个等待队列,等待队列是一个隐式的单向队列,等待队列中的每一个节点也是一个AbstractQueuedSynchronizer.Node实例。

每个Condition对象中保存了firstWaiter和lastWaiter作为队列首节点和尾节点,每个节点使用Node.nextWaiter保存下一个节点的引用,因此等待队列是一个单向队列。

每当一个线程调用Condition.await()方法,那么该线程会释放锁,构造成一个Node节点加入到等待队列的队尾。

6.2 等待

Condition.await()方法的源码如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
public final void await() throws InterruptedException {
if (Thread.interrupted())
throw new InterruptedException();
Node node = addConditionWaiter(); //构造一个新的等待队列Node加入到队尾
int savedState = fullyRelease(node); //释放当前线程的独占锁,不管重入几次,都把state释放为0
int interruptMode = 0;
//如果当前节点没有在同步队列上,即还没有被signal,则将当前线程阻塞
while (!isOnSyncQueue(node)) {
LockSupport.park(this);
//后面的蓝色代码都是和中断相关的,主要是区分两种中断:是在被signal前中断还是在被signal后中断,如果是被signal前就被中断则抛出 InterruptedException,否则执行 Thread.currentThread().interrupt();
if ((interruptMode = checkInterruptWhileWaiting(node)) != 0) //被中断则直接退出自旋
break;
}
//退出了上面自旋说明当前节点已经在同步队列上,但是当前节点不一定在同步队列队首。acquireQueued将阻塞直到当前节点成为队首,即当前线程获得了锁。然后await()方法就可以退出了,让线程继续执行await()后的代码。
if (acquireQueued(node, savedState) && interruptMode != THROW_IE)
interruptMode = REINTERRUPT;
if (node.nextWaiter != null) // clean up if cancelled
unlinkCancelledWaiters();
if (interruptMode != 0)
reportInterruptAfterWait(interruptMode);
}


final int fullyRelease(Node node) {
boolean failed = true;
try {
int savedState = getState();
if (release(savedState)) {
failed = false;
return savedState;
} else {
throw new IllegalMonitorStateException();
}
} finally {
if (failed)
node.waitStatus = Node.CANCELLED;
}
}

final boolean isOnSyncQueue(Node node) {
//如果当前节点状态是CONDITION或node.prev是null,则证明当前节点在等待队列上而不是同步队列上。之所以可以用node.prev来判断,是因为一个节点如果要加入同步队列,在加入前就会设置好prev字段。
if (node.waitStatus == Node.CONDITION || node.prev == null)
return false;
//如果node.next不为null,则一定在同步队列上,因为node.next是在节点加入同步队列后设置的
if (node.next != null) // If has successor, it must be on queue
return true;
return findNodeFromTail(node); //前面的两个判断没有返回的话,就从同步队列队尾遍历一个一个看是不是当前节点。
}

private boolean findNodeFromTail(Node node) {
Node t = tail;
for (;;) {
if (t == node)
return true;
if (t == null)
return false;
t = t.prev;
}
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
final boolean acquireQueued(final Node node, int arg) {
boolean failed = true;
try {
boolean interrupted = false;
for (;;) {
final Node p = node.predecessor();
if (p == head && tryAcquire(arg)) {
setHead(node);
p.next = null; // help GC
failed = false;
return interrupted;
}
if (shouldParkAfterFailedAcquire(p, node) &&
parkAndCheckInterrupt())
interrupted = true;
}
} finally {
if (failed)
cancelAcquire(node);
}
}

6.3 通知

Condition.signal() 方法的源码如下:

1
2
3
4
5
6
7
public final void signal() {
if (!isHeldExclusively())
throw new IllegalMonitorStateException(); //如果同步状态不是被当前线程独占,直接抛出异常。从这里也能看出来,Condition只能配合独占类同步组件使用。
Node first = firstWaiter;
if (first != null)
doSignal(first); //通知等待队列队首的节点。
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
private void doSignal(Node first) {
do {
if ( (firstWaiter = first.nextWaiter) == null)
lastWaiter = null;
first.nextWaiter = null;
} while (!transferForSignal(first) && //transferForSignal方法尝试唤醒当前节点,如果唤醒失败,则继续尝试唤醒当前节点的后继节点。
(first = firstWaiter) != null);
}

final boolean transferForSignal(Node node) {
//如果当前节点状态为CONDITION,则将状态改为0准备加入同步队列;如果当前状态不为CONDITION,说明该节点等待已被中断,则该方法返回false,doSignal()方法会继续尝试唤醒当前节点的后继节点
if (!compareAndSetWaitStatus(node, Node.CONDITION, 0))
return false;

/*
* Splice onto queue and try to set waitStatus of predecessor to
* indicate that thread is (probably) waiting. If cancelled or
* attempt to set waitStatus fails, wake up to resync (in which
* case the waitStatus can be transiently and harmlessly wrong).
*/
Node p = enq(node); //将节点加入同步队列,返回的p是节点在同步队列中的先驱节点
int ws = p.waitStatus;
//如果先驱节点的状态为CANCELLED(>0) 或设置先驱节点的状态为SIGNAL失败,那么就立即唤醒当前节点对应的线程,线程被唤醒后会执行acquireQueued方法,该方法会重新尝试将节点的先驱状态设为SIGNAL并再次park线程;如果当前设置前驱节点状态为SIGNAL成功,那么就不需要马上唤醒线程了,当它的前驱节点成为同步队列的首节点且释放同步状态后,会自动唤醒它。
//其实笔者认为这里不加这个判断条件应该也是可以的。只是对于CAS修改前驱节点状态为SIGNAL成功这种情况来说,如果不加这个判断条件,提前唤醒了线程,等进入acquireQueued方法了节点发现自己的前驱不是首节点,还要再阻塞,等到其前驱节点成为首节点并释放锁时再唤醒一次;而如果加了这个条件,线程被唤醒的时候它的前驱节点肯定是首节点了,线程就有机会直接获取同步状态从而避免二次阻塞,节省了硬件资源。
if (ws > 0 || !compareAndSetWaitStatus(p, ws, Node.SIGNAL))
LockSupport.unpark(node.thread);
return true;
}

7 Condition等待通知的本质

总的来说,Condition的本质就是等待队列和同步队列的交互:

当一个持有锁的线程调用Condition.await()时,它会执行以下步骤:

  1. 构造一个新的等待队列节点加入到等待队列队尾
  2. 释放锁,也就是将它的同步队列节点从同步队列队首移除
  3. 自旋,直到它在等待队列上的节点移动到了同步队列(通过其他线程调用signal())或被中断
  4. 阻塞当前节点,直到它获取到了锁,也就是它在同步队列上的节点排队排到了队首。

当一个持有锁的线程调用Condition.signal()时,它会执行以下操作:

从等待队列的队首开始,尝试对队首节点执行唤醒操作;如果节点CANCELLED,就尝试唤醒下一个节点;如果再CANCELLED则继续迭代。

对每个节点执行唤醒操作时,首先将节点加入同步队列,此时await()操作的步骤3的解锁条件就已经开启了。然后分两种情况讨论:

  1. 如果先驱节点的状态为CANCELLED(>0) 或设置先驱节点的状态为SIGNAL失败,那么就立即唤醒当前节点对应的线程,此时await()方法就会完成步骤3,进入步骤4.
  2. 如果成功把先驱节点的状态设置为了SIGNAL,那么就不立即唤醒了。等到先驱节点成为同步队列首节点并释放了同步状态后,会自动唤醒当前节点对应线程的,这时候await()的步骤3才执行完成,而且有很大概率快速完成步骤4.

8 总结

如果知道Object的等待通知机制,Condition的使用是比较容易掌握的,因为和Object等待通知的使用基本一致。

对Condition的源码理解,主要就是理解等待队列,等待队列可以类比同步队列,而且等待队列比同步队列要简单,因为等待队列是单向队列,同步队列是双向队列。

以下是笔者对等待队列是单向队列、同步队列是双向队列的一些思考,欢迎提出不同意见:

之所以同步队列要设计成双向的,是因为在同步队列中,节点唤醒是接力式的,由每一个节点唤醒它的下一个节点,如果是由next指针获取下一个节点,是有可能获取失败的,因为虚拟队列每添加一个节点,是先用CAS把tail设置为新节点,然后才修改原tail的next指针到新节点的。因此用next向后遍历是不安全的,但是如果在设置新节点为tail前,为新节点设置prev,则可以保证从tail往前遍历是安全的。因此要安全的获取一个节点Node的下一个节点,先要看next是不是null,如果是null,还要从tail往前遍历看看能不能遍历到Node。

而等待队列就简单多了,等待的线程就是等待者,只负责等待,唤醒的线程就是唤醒者,只负责唤醒,因此每次要执行唤醒操作的时候,直接唤醒等待队列的首节点就行了。等待队列的实现中不需要遍历队列,因此也不需要prev指针。

参考链接:Java显式锁学习总结之六:Condition源码分析