Hexo

点滴积累 豁达处之

0%

go内存管理

go内存管理

基础概念

Go的内存分配核心思想

Go是内置运行时的编程语言(runtime),像这种内置运行时的编程语言通常会抛弃传统的内存分配方式,改为自己管理。这样可以完成类似预分配、内存池等操作,以避开系统调用带来的性能问题,防止每次分配内存都需要系统调用。

Go的内存分配的核心思想可以分为以下几点:

  • 每次从操作系统申请一大块儿的内存,由Go来对这块儿内存做分配,减少系统调用
  • 内存分配算法采用Google的TCMalloc算法。算法比较复杂,究其原理可自行查阅。其核心思想就是把内存切分的非常的细小,分为多级管理,以降低锁的粒度。
  • 回收对象内存时,并没有将其真正释放掉,只是放回预先分配的大块内存中,以便复用。只有内存闲置过多的时候,才会尝试归还部分内存给操作系统,降低整体开销

内存结构

go在程序启动时会分配一块虚拟内存地址是连续的内存, 结构如下:

gc_heap01

这一块内存分为了3个区域, 在X64上大小分别是512M, 16G和512G, 它们的作用如下:

arena

arena区域就是我们通常说的heap, go从heap分配的内存都在这个区域中.为了方便管理把arena区域划分成一个个的page,每个page为8KB,一共有512GB/8KB个页;

bitmap

bitmap区域用于表示arena区域中哪些地址保存了对象, 并且对象中哪些地址包含了指针.
bitmap区域中一个byte(8 bit)对应了arena区域中的四个指针大小的内存, 也就是2 bit对应一个指针大小的内存.所以bitmap区域的大小是 512GB / 指针大小(8 byte) / 4 = 16GB.

bitmap区域中的一个byte对应arena区域的四个指针大小的内存的结构如下,
每一个指针大小的内存都会有两个bit分别表示是否应该继续扫描和是否包含指针:

gc_heap02

bitmap中的byte和arena的对应关系从末尾开始, 也就是随着内存分配会向两边扩展:

gc_heap03

spans

spans区域用于表示arena区中的某一页(Page)属于哪个span, 什么是span将在下面介绍.
spans区域中一个指针(8 byte)对应了arena区域中的一页(在go中一页=8KB).
所以spans的大小是 512GB / 页大小(8KB) * 指针大小(8 byte) = 512MB.

spans区域的一个指针对应arena区域的一页的结构如下, 和bitmap不一样的是对应关系会从开头开始:

gc_heap04

span

span是用于管理arena页的关键数据结构,每个span中包含1个或多个连续页,为了满足小对象分配,span中的一页会划分更小的粒度,而对于大对象比如超过页大小,则通过多页实现。

class

跟据对象大小,划分了一系列class,每个class都代表一个固定大小的对象,以及每个span的大小。如下表所示:

gc_heap05

上表中每列含义如下:

  • class: class ID,每个span结构中都有一个class ID, 表示该span可处理的对象类型
  • bytes/obj:该class代表对象的字节数
  • bytes/span:每个span占用堆的字节数,也即页数*页大小
  • objects: 每个span可分配的对象个数,也即(bytes/spans)/(bytes/obj)
  • waste bytes: 每个span产生的内存碎片,也即(bytes/spans)%(bytes/obj)

上表可见部分大小的对象在分配时会浪费一定的空间.

有人可能会注意到, 上面最大的span的元素大小是32K, 那么分配超过32K的对象会在哪里分配呢?
超过32K的对象称为”大对象”, 分配大对象时, 会直接从heap分配一个特殊的span,
这个特殊的span的类型(class)是0, 只包含了一个大对象, span的大小由对象的大小决定
.

特殊的span加上的66个标准的span, 一共组成了67个span类型.

内存管理组件

go的内存管理组件主要有:mspanmcachemcentralmheap

  • mspan为内存管理的基础单元,直接存储数据的地方。
  • mcache:每个运行期的goroutine都会绑定的一个mcache(具体来讲是绑定的GMP并发模型中的P,所以可以无锁分配mspan,后续还会说到),mcache会分配goroutine运行中所需要的内存空间(即mspan)。
  • mcentral为所有mcache切分好后备的mspan
  • mheap代表Go程序持有的所有堆空间。还会管理闲置的span,需要时向操作系统申请新内存。

mspan

src/runtime/mheap.go:mspan定义了其数据结构:

gc_heap06

span和管理的内存如下图所示:(以class 10为例)

gc_heap07

spanclass为10,参照class表可得出npages=1,nelems=56,elemsize为144。其中startAddr是在span初始化时就指定了某个页的地址。allocBits指向一个位图,每位代表一个块是否被分配,本例中有两个块已经被分配,其allocCount也为2。

next和prev用于将多个span链接起来,这有利于管理多个span

mcache

mcache:每个工作线程都会绑定一个mcache,本地缓存可用的mspan资源,这样就可以直接给Goroutine分配,因为不存在多个Goroutine竞争的情况,所以不会消耗锁资源。

mcache的结构体定义:

gc_heap08

mcacheSpan Classes作为索引管理多个用于分配的mspan,它包含所有规格的mspan。它是_NumSizeClasses的2倍,也就是67*2=134,为什么有一个两倍的关系,前面我们提到过:为了加速之后内存回收的速度,数组里一半的mspan中分配的对象不包含指针,另一半则包含指针。

gc_heap09

mcache在初始化的时候是没有任何mspan资源的,在使用过程中会动态地从mcentral申请,之后会缓存下来。当对象小于等于32KB大小时,使用mcache的相应规格的mspan进行分配。

mcentral

mcentral:为所有mcache提供切分好的mspan资源。每个central保存一种特定大小的全局mspan列表,包括已分配出去的和未分配出去的。 每个mcentral对应一种mspan,而mspan的种类导致它分割的object大小不同。当工作线程的mcache中没有合适(也就是特定大小的)的mspan时就会从mcentral获取。

mcentral被所有的工作线程共同享有,存在多个Goroutine竞争的情况,因此会消耗锁资源。结构体定义:

gc_heap10

gc_heap11

empty表示这条链表里的mspan都被分配了object,或者是已经被cache取走了的mspan,这个mspan就被那个工作线程独占了。而nonempty则表示有空闲对象的mspan列表。每个central结构体都在mheap中维护。

简单说下mcachemcentral获取和归还mspan的流程:

  • 获取

加锁;

nonempty链表找到一个可用的mspan;并将其从nonempty链表删除;

将取出的mspan加入到empty链表;将mspan返回给工作线程;

解锁。

  • 归还

加锁;

mspanempty链表删除;

mspan加入到nonempty链表;

解锁。

mheap

mheap:代表Go程序持有的所有堆空间,Go程序使用一个mheap的全局对象_mheap来管理堆内存。

mcentral没有空闲的mspan时,会向mheap申请。而mheap没有资源时,会向操作系统申请新内存。mheap主要用于大对象的内存分配,以及管理未切割的mspan,用于给mcentral切割成小对象。

同时我们也看到,mheap中含有所有规格的mcentral,所以,当一个mcachemcentral申请mspan时,只需要在独立的mcentral中使用锁,并不会影响申请其他规格的mspan

mheap结构体定义:

gc_heap12

  • lock: 互斥锁
  • spans: 指向spans区域,用于映射span和page的关系
  • bitmap:bitmap的起始地址
  • arena_start: arena区域首地址
  • arena_used: 当前arena已使用区域的最大地址
  • central: 每种class对应的两个mcentral

从数据结构可见,mheap管理着全部的内存,事实上Golang就是通过一个mheap类型的全局变量进行内存管理的。

mheap内存管理示意图如下:

gc_heap11

内存分配过程

Go的内存分配器在分配对象时,根据对象的大小,分成三类:小对象(小于等于16B)、一般对象(大于16B,小于等于32KB)、大对象(大于32KB)。

大体上的分配流程:

  • 32KB 的对象,直接从mheap上分配;

  • <=16B 的对象使用mcache的tiny分配器分配;

  • (16B,32KB] 的对象,首先计算对象的规格大小,然后使用mcache中相应规格大小的mspan分配;

    • 如果mcache没有相应规格大小的mspan,则向mcentral申请
    • 如果mcentral没有相应规格大小的mspan,则向mheap申请
    • 如果mheap中也没有合适大小的mspan,则向操作系统申请

总结

Golang内存分配是个相当复杂的过程,其中还掺杂了GC的处理,这里仅仅对其关键数据结构进行了说明,了解其原理而又不至于深陷实现细节。

  1. Golang程序启动时申请一大块内存,并划分成spans、bitmap、arena区域
  2. arena区域按页划分成一个个小块
  3. span管理一个或多个页
  4. mcentral管理多个span供线程申请使用
  5. mcache作为线程私有资源,资源来源于mcentral